3.6.62 \(\int \frac {d+e x^2}{\sqrt {a+b \cosh ^{-1}(c x)}} \, dx\) [562]

Optimal. Leaf size=287 \[ -\frac {d e^{a/b} \sqrt {\pi } \text {Erf}\left (\frac {\sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c}-\frac {e e^{a/b} \sqrt {\pi } \text {Erf}\left (\frac {\sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{8 \sqrt {b} c^3}-\frac {e e^{\frac {3 a}{b}} \sqrt {\frac {\pi }{3}} \text {Erf}\left (\frac {\sqrt {3} \sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{8 \sqrt {b} c^3}+\frac {d e^{-\frac {a}{b}} \sqrt {\pi } \text {Erfi}\left (\frac {\sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c}+\frac {e e^{-\frac {a}{b}} \sqrt {\pi } \text {Erfi}\left (\frac {\sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{8 \sqrt {b} c^3}+\frac {e e^{-\frac {3 a}{b}} \sqrt {\frac {\pi }{3}} \text {Erfi}\left (\frac {\sqrt {3} \sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{8 \sqrt {b} c^3} \]

[Out]

-1/24*e*exp(3*a/b)*erf(3^(1/2)*(a+b*arccosh(c*x))^(1/2)/b^(1/2))*3^(1/2)*Pi^(1/2)/c^3/b^(1/2)+1/24*e*erfi(3^(1
/2)*(a+b*arccosh(c*x))^(1/2)/b^(1/2))*3^(1/2)*Pi^(1/2)/c^3/exp(3*a/b)/b^(1/2)-1/2*d*exp(a/b)*erf((a+b*arccosh(
c*x))^(1/2)/b^(1/2))*Pi^(1/2)/c/b^(1/2)-1/8*e*exp(a/b)*erf((a+b*arccosh(c*x))^(1/2)/b^(1/2))*Pi^(1/2)/c^3/b^(1
/2)+1/2*d*erfi((a+b*arccosh(c*x))^(1/2)/b^(1/2))*Pi^(1/2)/c/exp(a/b)/b^(1/2)+1/8*e*erfi((a+b*arccosh(c*x))^(1/
2)/b^(1/2))*Pi^(1/2)/c^3/exp(a/b)/b^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.35, antiderivative size = 287, normalized size of antiderivative = 1.00, number of steps used = 21, number of rules used = 8, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {5909, 5881, 3389, 2211, 2236, 2235, 5887, 5556} \begin {gather*} -\frac {\sqrt {\pi } e e^{a/b} \text {Erf}\left (\frac {\sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{8 \sqrt {b} c^3}-\frac {\sqrt {\frac {\pi }{3}} e e^{\frac {3 a}{b}} \text {Erf}\left (\frac {\sqrt {3} \sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{8 \sqrt {b} c^3}+\frac {\sqrt {\pi } e e^{-\frac {a}{b}} \text {Erfi}\left (\frac {\sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{8 \sqrt {b} c^3}+\frac {\sqrt {\frac {\pi }{3}} e e^{-\frac {3 a}{b}} \text {Erfi}\left (\frac {\sqrt {3} \sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{8 \sqrt {b} c^3}-\frac {\sqrt {\pi } d e^{a/b} \text {Erf}\left (\frac {\sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c}+\frac {\sqrt {\pi } d e^{-\frac {a}{b}} \text {Erfi}\left (\frac {\sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x^2)/Sqrt[a + b*ArcCosh[c*x]],x]

[Out]

-1/2*(d*E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcCosh[c*x]]/Sqrt[b]])/(Sqrt[b]*c) - (e*E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a +
 b*ArcCosh[c*x]]/Sqrt[b]])/(8*Sqrt[b]*c^3) - (e*E^((3*a)/b)*Sqrt[Pi/3]*Erf[(Sqrt[3]*Sqrt[a + b*ArcCosh[c*x]])/
Sqrt[b]])/(8*Sqrt[b]*c^3) + (d*Sqrt[Pi]*Erfi[Sqrt[a + b*ArcCosh[c*x]]/Sqrt[b]])/(2*Sqrt[b]*c*E^(a/b)) + (e*Sqr
t[Pi]*Erfi[Sqrt[a + b*ArcCosh[c*x]]/Sqrt[b]])/(8*Sqrt[b]*c^3*E^(a/b)) + (e*Sqrt[Pi/3]*Erfi[(Sqrt[3]*Sqrt[a + b
*ArcCosh[c*x]])/Sqrt[b]])/(8*Sqrt[b]*c^3*E^((3*a)/b))

Rule 2211

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - c*(
f/d)) + f*g*(x^2/d)), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]

Rule 2235

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt[Pi]*(Erfi[(c + d*x)*Rt[b*Log[F], 2
]]/(2*d*Rt[b*Log[F], 2])), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2236

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt[Pi]*(Erf[(c + d*x)*Rt[(-b)*Log[F],
 2]]/(2*d*Rt[(-b)*Log[F], 2])), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 3389

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rule 5556

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 5881

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[1/(b*c), Subst[Int[x^n*Sinh[-a/b + x/b], x], x
, a + b*ArcCosh[c*x]], x] /; FreeQ[{a, b, c, n}, x]

Rule 5887

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/(b*c^(m + 1)), Subst[Int[x^n*Cosh
[-a/b + x/b]^m*Sinh[-a/b + x/b], x], x, a + b*ArcCosh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 5909

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a
 + b*ArcCosh[c*x])^n, (d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && NeQ[c^2*d + e, 0] && IntegerQ[p
] && (p > 0 || IGtQ[n, 0])

Rubi steps

\begin {align*} \int \frac {d+e x^2}{\sqrt {a+b \cosh ^{-1}(c x)}} \, dx &=\int \left (\frac {d}{\sqrt {a+b \cosh ^{-1}(c x)}}+\frac {e x^2}{\sqrt {a+b \cosh ^{-1}(c x)}}\right ) \, dx\\ &=d \int \frac {1}{\sqrt {a+b \cosh ^{-1}(c x)}} \, dx+e \int \frac {x^2}{\sqrt {a+b \cosh ^{-1}(c x)}} \, dx\\ &=-\frac {d \text {Subst}\left (\int \frac {\sinh \left (\frac {a}{b}-\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \cosh ^{-1}(c x)\right )}{b c}+\frac {e \text {Subst}\left (\int \frac {\cosh ^2(x) \sinh (x)}{\sqrt {a+b x}} \, dx,x,\cosh ^{-1}(c x)\right )}{c^3}\\ &=-\frac {d \text {Subst}\left (\int \frac {e^{-i \left (\frac {i a}{b}-\frac {i x}{b}\right )}}{\sqrt {x}} \, dx,x,a+b \cosh ^{-1}(c x)\right )}{2 b c}+\frac {d \text {Subst}\left (\int \frac {e^{i \left (\frac {i a}{b}-\frac {i x}{b}\right )}}{\sqrt {x}} \, dx,x,a+b \cosh ^{-1}(c x)\right )}{2 b c}+\frac {e \text {Subst}\left (\int \left (\frac {\sinh (x)}{4 \sqrt {a+b x}}+\frac {\sinh (3 x)}{4 \sqrt {a+b x}}\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{c^3}\\ &=-\frac {d \text {Subst}\left (\int e^{\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \cosh ^{-1}(c x)}\right )}{b c}+\frac {d \text {Subst}\left (\int e^{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \cosh ^{-1}(c x)}\right )}{b c}+\frac {e \text {Subst}\left (\int \frac {\sinh (x)}{\sqrt {a+b x}} \, dx,x,\cosh ^{-1}(c x)\right )}{4 c^3}+\frac {e \text {Subst}\left (\int \frac {\sinh (3 x)}{\sqrt {a+b x}} \, dx,x,\cosh ^{-1}(c x)\right )}{4 c^3}\\ &=-\frac {d e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c}+\frac {d e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c}-\frac {e \text {Subst}\left (\int \frac {e^{-3 x}}{\sqrt {a+b x}} \, dx,x,\cosh ^{-1}(c x)\right )}{8 c^3}-\frac {e \text {Subst}\left (\int \frac {e^{-x}}{\sqrt {a+b x}} \, dx,x,\cosh ^{-1}(c x)\right )}{8 c^3}+\frac {e \text {Subst}\left (\int \frac {e^x}{\sqrt {a+b x}} \, dx,x,\cosh ^{-1}(c x)\right )}{8 c^3}+\frac {e \text {Subst}\left (\int \frac {e^{3 x}}{\sqrt {a+b x}} \, dx,x,\cosh ^{-1}(c x)\right )}{8 c^3}\\ &=-\frac {d e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c}+\frac {d e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c}-\frac {e \text {Subst}\left (\int e^{\frac {3 a}{b}-\frac {3 x^2}{b}} \, dx,x,\sqrt {a+b \cosh ^{-1}(c x)}\right )}{4 b c^3}-\frac {e \text {Subst}\left (\int e^{\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \cosh ^{-1}(c x)}\right )}{4 b c^3}+\frac {e \text {Subst}\left (\int e^{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \cosh ^{-1}(c x)}\right )}{4 b c^3}+\frac {e \text {Subst}\left (\int e^{-\frac {3 a}{b}+\frac {3 x^2}{b}} \, dx,x,\sqrt {a+b \cosh ^{-1}(c x)}\right )}{4 b c^3}\\ &=-\frac {d e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c}-\frac {e e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{8 \sqrt {b} c^3}-\frac {e e^{\frac {3 a}{b}} \sqrt {\frac {\pi }{3}} \text {erf}\left (\frac {\sqrt {3} \sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{8 \sqrt {b} c^3}+\frac {d e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c}+\frac {e e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{8 \sqrt {b} c^3}+\frac {e e^{-\frac {3 a}{b}} \sqrt {\frac {\pi }{3}} \text {erfi}\left (\frac {\sqrt {3} \sqrt {a+b \cosh ^{-1}(c x)}}{\sqrt {b}}\right )}{8 \sqrt {b} c^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.45, size = 213, normalized size = 0.74 \begin {gather*} \frac {e^{-\frac {3 a}{b}} \left (3 \left (4 c^2 d+e\right ) e^{\frac {4 a}{b}} \sqrt {\frac {a}{b}+\cosh ^{-1}(c x)} \Gamma \left (\frac {1}{2},\frac {a}{b}+\cosh ^{-1}(c x)\right )+\sqrt {3} e \sqrt {-\frac {a+b \cosh ^{-1}(c x)}{b}} \Gamma \left (\frac {1}{2},-\frac {3 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )+3 \left (4 c^2 d+e\right ) e^{\frac {2 a}{b}} \sqrt {-\frac {a+b \cosh ^{-1}(c x)}{b}} \Gamma \left (\frac {1}{2},-\frac {a+b \cosh ^{-1}(c x)}{b}\right )+\sqrt {3} e e^{\frac {6 a}{b}} \sqrt {\frac {a}{b}+\cosh ^{-1}(c x)} \Gamma \left (\frac {1}{2},\frac {3 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )\right )}{24 c^3 \sqrt {a+b \cosh ^{-1}(c x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^2)/Sqrt[a + b*ArcCosh[c*x]],x]

[Out]

(3*(4*c^2*d + e)*E^((4*a)/b)*Sqrt[a/b + ArcCosh[c*x]]*Gamma[1/2, a/b + ArcCosh[c*x]] + Sqrt[3]*e*Sqrt[-((a + b
*ArcCosh[c*x])/b)]*Gamma[1/2, (-3*(a + b*ArcCosh[c*x]))/b] + 3*(4*c^2*d + e)*E^((2*a)/b)*Sqrt[-((a + b*ArcCosh
[c*x])/b)]*Gamma[1/2, -((a + b*ArcCosh[c*x])/b)] + Sqrt[3]*e*E^((6*a)/b)*Sqrt[a/b + ArcCosh[c*x]]*Gamma[1/2, (
3*(a + b*ArcCosh[c*x]))/b])/(24*c^3*E^((3*a)/b)*Sqrt[a + b*ArcCosh[c*x]])

________________________________________________________________________________________

Maple [F]
time = 180.00, size = 0, normalized size = 0.00 \[\int \frac {e \,x^{2}+d}{\sqrt {a +b \,\mathrm {arccosh}\left (c x \right )}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)/(a+b*arccosh(c*x))^(1/2),x)

[Out]

int((e*x^2+d)/(a+b*arccosh(c*x))^(1/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(a+b*arccosh(c*x))^(1/2),x, algorithm="maxima")

[Out]

integrate((x^2*e + d)/sqrt(b*arccosh(c*x) + a), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(a+b*arccosh(c*x))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {d + e x^{2}}{\sqrt {a + b \operatorname {acosh}{\left (c x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)/(a+b*acosh(c*x))**(1/2),x)

[Out]

Integral((d + e*x**2)/sqrt(a + b*acosh(c*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(a+b*arccosh(c*x))^(1/2),x, algorithm="giac")

[Out]

integrate((e*x^2 + d)/sqrt(b*arccosh(c*x) + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {e\,x^2+d}{\sqrt {a+b\,\mathrm {acosh}\left (c\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x^2)/(a + b*acosh(c*x))^(1/2),x)

[Out]

int((d + e*x^2)/(a + b*acosh(c*x))^(1/2), x)

________________________________________________________________________________________